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Abstract: The main purpose of the paper is a numerical comparison of three integration methods for semi-discrete parabolic partial
differential equations in two space variables. Linear as well as nonlinear equations are considered. The integration methods are the
well-known ADI method of Peaceman and Rachford, a global extrapolation scheme of the classical ADI method to order four and a
fourth order, four-step ADI splitting method.
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1. Introduction

Let the system of ordinary differential equations
d
-'a%:f(t?.)))v (1'1)

with prescribed values for y at ¢ =1, originate from the semi-discretization on a uniform grid 2, (with
mesh width h) of a parabolic two-dimensional partial differential equation. In a few recent papers [4,10]
high order splitting methods are described for the numerical solution of (1.1) by using a splitting of the
right-hand side function f(z, y), e.g. f(¢, y) = fi(t, y) + [,(¢, y) where the splitting functions f, and f, have
‘simply structured’ Jacobian matrices. More generally, one may use splitting functions F(¢, u, v) such that
F(t,y,y)=f(t,y) and 3F/3u, dF/dv are again ‘simply structured’. Here, the numerical solution of
parabolic partial differential equations with smooth initial data is considered.

The SC method analyzed and tested in [4] is a fourth order, four-step splitting method for semi-discrete
parabolic equations. The method is a variant of the method of successive corrections described in [2]. In this
method the fourth-order backward differentiation formula S, p. 242] is chosen for the integration of (1.1).
Then in each integration step a, usually nonlinear, system of equations is solved by a (nonlinear) ADI
splitting method and this iteration process is accelerated by using Chebyshev polynomials. The parameters in
the Chebyshev iteration process are chosen such that the lower frequencies in the initial error are strongly
damped. Thus, if the problem is smooth so that no high frequencies are involved, a rather fast convergence
is obtained to the solution of the system of equations originating from the fourth order backward
differentiation formula. In Section 2 we briefly describe this method.

In [10] global extrapolation of the locally one-dimensional (LOD) method is advocated to increase the
accuracy. This technique can be applied to any one-step splitting method for time-dependent, multi-space
dimensional problems. Here, global extrapolation to order four of the classical ADI method of Peaceman
and Rachford [6] is considered. Global extrapolation involves parallel integration with the same basic
scheme on different time grids, but completely separated. Global extrapolation to order four requires twice
as many operations per step as the basic scheme. By global extrapolation the accuracy is increased in a
global way and by no means the stepwise stability of the solution process is influenced. In addition, global
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extrapolation is easy to implement. In Section 3 the classical ADI method and the global extrapolation
scheme are briefly described.

Finally, in Section 4 the three integration methods are compared for a class of initial-boundary value
problems. It is the purpose of this paper to give more insight into the use of an ADI splitting method for
semi-discrete parabolic equations.

2. The SC method

In this section the SC method is briefly described. Details on the construction and analysis of this
method are, as far as possible, omitted. The interested reader is referred to [4].

By applying the fourth-order backward differentiation formula [5, p. 242] to (1.1) we obtain at each
integration step an implicit equation for the numerical solution y,,, at ¢, , ;:

.yn+l_b07f(tn+l’yn+1)=29 (21)
where b, = 3, £ = 5%[48y, — 36y,_, + 16y,_, — 3y,_,] and 7 is the integration step.

2.1. The iteration scheme

The systems of equations (2.1) are solved by the SC method, which is defined by

FO=4y,~6y, 1+ 4y, 2=y, 3, (2.2a)
YO=3 + byrF(1,,1, @, 5@, (2.2b)
y(j+])=(ﬂj—}‘j)}"(j)+(1“I‘j)y(j_l)+)\jy**, j=0,1,....m—1, (2.2(:)
a1 =¥,

where F(t, u, v) denotes a Jacobi type splitting function such that F(z, y, y) = f(z, y) and y** is determined
by the two equations

wy* +(1 = 0)y P = brF (1, yV, y*) = 3,
wy** +(1 = @) p* = bg7F(t,, 1, p**, p*) = 3,
with F(t, u, v) an ADI splitting function [3] such that F(z, y, y) = f(t, y).

(2.3)

2.2. The iteration parameters

Let T, denote the Chebyshev polynomial of degree j, then the coefficients w, p ; and A; in the iteration
scheme (2.2)—(2.3) are defined by

Cosh(?‘w_lz),‘_l
w= m
(arcooshlS) a
cosh| ————— | —cos —
2m
™ T 172
o —2w(w—1)“w{(w——1)(1+cos m)(Sw—L—wcos -2——”—1)}
"2+w(l-—~c03 _'r_r_)
2m
-— £ ] _
L2 Qe-1s 2+1), palel s
($*+w) w
bta T (wo)
# =1’ Wo = > }‘-=2W ——
0 " b—a 7 OTJ"+1(WO)
2 2,
MN=7Tp N=pra =L 2..m-1
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2.3. The implicit relations

The predictor formula y©@ in the iteration scheme (2.2)-(2.3) is obtained by performing an adjusted
Jacobi iteration (2.2b) on the third-order extrapolation formula (2.2a). The implicit equations in the Jacobi
iteration are solved by performing one Newton iteration, where it is assumed that the matrix 3f/3y is
evaluated in (z,,,, y®) and 7© is the initial approximation in the Newton iteration. Then (2.2b) can be
simplified into

yO=(+d) M Z 4 berf (1,00, 50) + 5, 2.2v)

where d = $3b,70 and o is an estimate of the spectral radius of 3f/9y. The estimate o was either given in
analytical form or computed by applying Gerschgorin’s theorem to the matrix 3f/9y.

In the numerical experiments the right-hand side of (1.1) can be linearly split into two terms, i.e.,
f(, »)=1f,(t, )+ f5(t, y) where the splitting functions f, and f, correspond to one-space dimensional
partial differential operators and have tridiagonal Jacobian matrices [3]. In this case the (nonlinear) ADI
splitting function F(¢, u, v) is defined by

F(t,u,v)=f(t,u)+£(t,v). (2.5)

The implicit equations (2.3) are solved by performing one Newton iteration, i.e.,

y =y = [l = byrF ) [y = borf (1,01, 57) - 2],

(2.3)
y**=y* —[wl ~ byrF,] [ y* = by7f(tnir, y*) = =],

where F, and F, denote the tridiagonal Jacobian matrices evaluated in (z,, ,, 7@) of f, and f,, respectively.
2.4. Stability

The SC method explicitly uses the information that (1.1) originates from a parabolic problem so that the
eigenvalues of 3f/3y will be located in a long narrow strip along the negative axis. At the same time, this is
also a restriction in the applicability of this method. The SC method is completely defined if we specify m.
The resulting fourth-order four-step method is conditionally stable. To be more precise, the real stability
boundary B of the SC method is of the form B8 = ¢m*, where c is approximately equal to 4. In Table 2.1 the
stability boundaries 8 = (m) of the SC method and the corresponding w and S*-values are listed for
m =1 until 6.

The SC method is stable for the S*-values listed in Table 2.1 and for integration steps satisfying the
condition

B(m)

(]

T<

(2.6)

In an actual application of the method we will choose for m the smallest integer such that (2.6) is satisfied
when r and o are prescribed.

Table 2.1
The stability boundaries 8 of the SC method

m=1 m=2 m=3 m=4 m=35 m=6
w = 1.07 1.8 32 518 1.75 10.88
S*= 0.48 4 18 54 129 264

B = 20 101 385 1095 2549 5150
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3. Global extrapolation of the classical ADI method of Peaceman and Rachford

In this section we shortly describe the global extrapolation of the classical ADI method of Peaceman
and Rachford [6]. We assume that the right-hand side of (1.1), f(¢, y),can be written as

(6, y) =11, y) +1:(2,»), (3.1)

where the splitting function f; corresponds to a one-space dimensional partial differential operator and has
a tridiagonal matrix J;.

3.1. The ADI method

The following time integration formula,
y* =y + 3fi (1, 3, %) + 40 (10, 0), (3.2a)
yn+1 = zy* ~yn + %Tf2(tn + T, yn+1) - %7f2(tn’ yn)! (3‘2b)

then defines the second-order ADI method of Peaceman and Rachford in the so-called Varga form [9]. The
vectors y, and y, ; denote the numerical approximations to the exact solution y(z) of (1.1) at the step
points ¢, and ¢, ., = 7, + 7, respectively.

3.2. Global extrapolation

The Peaceman—Rachford method (3.2) may be considered as a particular one-step integration method
for the system of ordinary differential equations (1.1). Suppose that (3.2) is applied from 7, =0 up to
ty =T, using a time grid G, with stepsize = and let f be M times differentiable with M sufficiently large.
Then there exists an asymptotic expansion in the stepsize 7 for the global error (see [8,10]). The existence of
this asymptotic expansion for the global error forms the basis for global (Richardson) extrapolation of the
ADI method (3.2).

Global extrapolation is easy to implement. It involves parallel integration with the basic scheme (3.2) on
different time grids. Let us consider the coherent grids G,, G, and G; depicted in Fig. 3.1. G, is obtained
from G; by halving the stepsize 7, etc. Because of this coherence between the grids, the asymptotic
expression of the global error holds for 7, 37 and 47, at all common gridpoints, i.e., on the whole of G,. Let
Ya.; denote the approximation to y(t,) at the grid G,. Then compute at all common points

754]:: %yn.B - %ynﬂ + -112_})11.1’ (3‘3)

and a fourth-order global extrapolation scheme of the ADI method is obtained. In the numerical
experiments we apply (3.3) only in the endpoint z = 1. The integrations on the different grids are performed
completely separated from each other. The results y, ; are only connected by the initial data y; ; = y,, for all
i. This means that global extrapolation cannot interfere with the stability of the ADI method. Global
extrapolation to order four requires twice as many operations per step as the basic scheme (3.2) on G;.

It is well known that the classical ADI method will lose accuracy if the boundary conditions of the
parabolic equation become time-dependent. The globally extrapolated results also suffer from this
phenomenon.

T 3

4. 2. —
Gl M (Yn ‘)
G, /2 + + 4 (G
/3
G 4= — 4 + v )
3 cn_l th toel toe2 n,3

Fig. 3.1. Three coherent grids.
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3.3. The implicit relations

The implicit equations (3.2a) and (3.2b) are solved by performing » Newton iterations, i.e.,

xO=y,

XD =0 (1= 301 7 (2O -, = 4 (1, + drx0) = defalt)], =0, 1,
(3.22%)

y*=x"’)

and

U(O)=y*,

pU V= oD — [T =32h] [0 =29 4y, + 37 (1,, 1) = 3h (1, + 7 0)], j=0,. 01,
(3.2b%)

Y1 T v(l’)’

where J; and J, denote the tridiagonal Jacobian matrices evaluated in (¢, + 37, p,) and (1, +1,,),
respectively. In case of linear problems we perform one iteration using the same Newton-type process. The
ADI method of Peaceman and Rachford and the global extrapolation scheme will be denoted by PR(»)
and GEPR(»), respectively, in the tables of results.

4. The set of test problems

In order to get insight into the behaviour of the various methods we applied them to a set of test
equations. It is difficult to choose a representative set of test problems from the problem class under
consideration. Here, a number of problems with a prescribed exact solution are constructed. Some of these
problems served as a test example before {4,7,10]. The equations include difficulties like: arbitrary
nonlinearities to test the stability of the methods, oscillating solutions and time-dependent boundary
conditions.

4.1. The test examples

The equations are scalar equations and belong to the general class
u,= G, (1, x;, x5, u, Uy, uxm) + Gz(t, Xy, Xg, Uy Uy, ux2x2), (4.1)

denotes on {(¢, x;, x,)I0 <t < 1, (x, x,) € 2}, where £ is given by
2= {(x1$ X)0<x,<1,0<x, < 1}_

The initial conditions and the Dirichlet boundary conditions are obtained from the exact solutions. The
space discretization of all equations is performed using standard symmetric differences on a uniform grid
with grid size h = 5, resulting in 361 internal grid points. The time integration aspects of the methods can
be tested more or less separately from the effects of space discretization, because the equations are chosen
such that discretization of the space variables on a uniform grid by standard finite differences does not give
a space discretization error.

We now summarize the parabolic equations together with their exact solution:

1 u,=u, .  tu .+ e"[(xl2 - xl)(.x§ —-xz) +2(Jc12 ~x1) +2(x§ -—xz)],

u(t, x,, %) =1-e""(xf - x;)(x3 — x,).
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I u=u,_ +u —e“‘(x12+x§+4),

¢ T Uy x, X3X3
u(t, xp, x,)=1+e (x}+x2).

I u=u,  tu .~ e (x}+x3+6x,+ 6x,),
u(t, x;, %) =1+e "(x} + x3).

v U =u,  Fu, .+ 212[(x12 + xz)'rr cos 2mt — x; — sin 2'rrt] +2t[(x,2+ xz) sin 2m+x1x§] ,
u(t, x,, x3) =1+ 12[(x} + x,) sin 201 + x,x3].

1 2 2 4 _
A" u,=-——~1+t(ux1xl+ux2x2)+(ux!) +(u,,) —e ’[x,z+x§+——-l+t + 4e ’(x12+x§)},

u(t, x;, x;) =1 +e"(x12+x§).

2 xl,.xlz
VI = 1 (“x,x,‘*'“ u + 1 [1+( 1 z) }

T T+t "2*2)“2(1+t) 201 +1)

(1 +1r)2
2 52
u(t7xl’x2)=1+ ;‘+J:2'
X+ x 3(x, +x,)
VII u,= iﬁ( 3 uim) — =L 220 6in®2mt + m(x; + x,) cos 2,

41 +1)
u(t, x;, x;) = 3(x; + x,) sin 2mz.

VI w=u(u,, +u,, )—20%(x, +e™ Ju+1(2—1)(xF+ x;,)e ™" + 20x,x3,

u(t, x,, ;) =1+ 22[(x2 + x;)e ™" + x,x3] .

4.2. Strategy and results

The testing strategy is as simple as possible: all equations are integrated by the various methods using a
sequence of constant stepsizes 7. In case of nonlinear problems the updating of the tridiagonal matrices is
performed every integration step (see Sections 2 and 3). We thus do not use any strategy to estimate errors,
to vary the stepsize and to control the updating of the tridiagonal matrices. The examples are such that an
analytical expression for the Jacobian matrices was available.

In the SC method we need an estimate of the spectral radius of the matrix df/dy, viz. o (see Section 2).
For the Examples V and VIII the estimate o was computed by applying Gerschgorin’s theorem to the
matrix 3f/dy at each integration step. For the other examples the estimate o was given in analytical form
and the expression for o is listed in the tables of results. The number of f-evaluations is minimized with
respect to absolute stability requirements (see (2.6)). The estimate o is constant for the linear Examples I,
11, III and IV. For the Problems VI and VII, where we made a t-dependent estimate, m is minimized at
each step.

The starting values needed by the SC method were obtained by computing them from the exact values
prescribed at t = — 37, —27, —71, 0.

The accuracy is measured by the number sd of correct significant digits defined by

sd = —log,,/maximum absolute error at 1 = 1J. (4.2)

The efficiency is measured by

fev = the total number of right-hand side evaluations ( f(¢, y) in (1.1)),
Jev = the total number of Jacobian evaluations (3f/0y)
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The order of accuracy, the computational effort required per integration step 7 and the number of arrays required for storage of the

PR(»), GEPR(») and SC method

PR(») GEPR(») SC
Order of accuracy 2 4 4
Number of f-evaluations 14w 2v+1 2m+1
Number of J-evaluations 1 2 1
Number of F-B substitutions 2y 4» 2m
Number of LU-decompositions 2 4 2
Number of storage arrays 1 13 14
10. 0
9.0
8.0 GEPR(1)
sd
7.0
‘o /
Vg PR(1)
5.0]
4.0
3.0
0 50 100 150 200
fev

Fig. 4.1. Number of correct significant digits sd and number of f-evaluations fev for the linear Example I with constant boundary

conditions and h = 3.

Table 4.1.

Results for the linear Example I with constant boundary conditions and h = 5 obtained by the PR(1), GEPR(1) and SC method. In

the SC method o = 8/k2

Method T sd fev FBS
PR(1) : 3.29 9 12
5 3.92 18 24
5 452 36 43
- 5.12 72 96
= 5.72 144 192
GEPR(1) i 4.15 18 24
5 5.12 36 48
= 6.57 72 96
= 7.83 144 192
sC : 5.91 54 48
= 6.72 84 7
% 7.85 168 144
= 9.16 240 192
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10.0

GEPR(1)

9.0

sd 8.0

6.01

5.0

4.0

3.0

2.0

0 50 100 150 200 250

fev

Fig. 4.2. Number of correct significant digits sd and number of f-evaluations fev for the linear Example If with # = £, The dotted lines
refer 1o results obtained by PR(1) and GEPR(1), where the source term v was only included in the splitting function f;.

and

FBS = the total number of forward—-backward substitutions needed for the solution of
tridiagonal systems.

In all methods the total number of LU-decompositions of the tridiagonal matrices is twice as many as the
total number of Jacobian evaluations Jev. A conclusion based on the sd- and fev-values as to which method

Table 4.2

Results for the linear Example II with h = ,'T, obtained by the PR(1), GEPR(1) and SC method. The numbers in the parentheses are

the sd-values obtained by PR(1) and GEPR(1), where the source term v was only included in the splitting function f;. In the SC
method o = 8/h?

Method T sd fev FBS
PR(1) : 4.98(2.81) 9 12
< 5.58(3.41) 18 24
&% 6.18(4.01) 36 48
= 6.79(4.61) 72 96
= 7.39(5.21) 144 192
GEPR(1) ! 5.45(2.95) 18 24
= 6.74(3.56) 36 48
5 8.03(4.50) 72 96
= 9.34(5.76) 144 192
sC : 439 54 48
5 5.49 84 72
= 6.60 168 144
= 7.89 240 192




H.B. de Vries / ADI splitting methods 187

9.0
_, FMGEPR(1)
8.0 . c
:’ -7
7.0 .
sd -
Id - -
6.0 GEPR(1)
1
5.0,
| PR(1)
z..o}
I
3.o|
i
2.0}
1ol
0 50 100 150 200 250

fev

Fig. 4.3. Number of correct significant digits sd and number of f-evaluations fev for the linear Example III with & = %. The dotted

lines refer to results obtained by PR(1) and GEPR(1) with the boundary-value correction (i.e, FMPR(1) and FMGEPR(1),
respectively).

is the more efficient one is difficult, since one should also measure the additional computational effort
required by the methods. Therefore, we list in the tables of results also the Jev- and FBS-values required by
the various methods, so that the reader can judge the results himself. For linear problems the Jacobian
matrices were determined once. In this case Jev is not listed in the tables of results. Other computations,
such as the calculations of the extrapolation formula (2.2a) and 2 (2.1), the evaluation of the spectral radius
of 3f/dy, all initial work for estimating the iteration parameters and the Chebyshev iterations needed in the

Table 4.3

Results for the linear Example III with h = 35 obtained by the PR(1), GEPR(1) and SC method. The numbers in the parentheses are
the sd-values obtained by FMPR(1) and FMGEPR(1). In the SC method ¢ =8 /A2

Method T sd fev FBS
PR(1) : 2.23(4.26) 9 12
= 2.88(4.88) 18 24
% 3.51(5.49) 36 48
X 4.11(6.09) 72 96
= 4.71(6.69) 144 192
GEPR(1) H 2.83(5.18) 18 24
& 3.57(6.26) 36 48
7 4.50(7.39) ') 9%
= 5.76(8.61) 144 192
SC : 4.44 54 48
& 5.62 84 72
= 6.72 168 144
= 7.98 240 192
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|
5.0l
! GEPR(1)
sC
sa 40 PR(1)
3.0
2.0
1.0
0.0
0 50 100 150 200 250
fev

Fig. 4.4. Number of correct significant digits sd and number of f-evaluations fev for the linear Example IV with an oscillating solution
and h=.

SC method, are not taken into account in our efficiency measure. This slightly favours the SC method in
our comparisons.

Table 4.0 summarizes for the various methods the order of accuracy, the computational effort required
per integration step 7 and the number of arrays of length corresponding to the number of grid points
required for storage. Notice that in the global extrapolation scheme the integration step T corresponds to
the step on the finest time grid G, and the value of m in the SC method is not necessarily constant at each
step (see Section 2.4).

It is well known that the ADI method of Peaceman and Rachford will lose accuracy if the boundary
conditions become time-dependent [1,7]. In order to improve the accuracy Fairweather and Mitchell
proposed a boundary-value correction technique (see [1,7]) for the ADI method. For the Examples III and
V we have also used the Fairweather—Mitchell boundary-value correction in the basic PR(») scheme. This
will be denoted by FMPR(») and FMGEPR(») in the tables of results and figures. The computational
work of FMPR(») is hardly more than that of PR(»).

Table 4.4

Results for the linear Example 1V with k = 35 obtained by the PR(1), GEPR(1) and SC method. In the SC method o = 8/h*

Method T sd fev FBS

PR(1) 4 1.47 9 12
H 1.99 18 24
= 2.60 36 48
% 3.20 72 96
= 3.81 144 192

GEPR(1) : 1.68 18 24
= 2.55 36 48
5 3.63 72 . 9%
= 457 144 192

sC i 112 54 48
< 1.86 . 84 72
% 2.83 168 144
= 4.09 240 192
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8.0 s
w 10
6.0 FMGEPR(2)
.- 7 GEPR(2)
LTI PMPR(2)
5.0 PR(2)
4.0
3.0
2.0
1.0
0 50 100 150 200 250

fev

Fig. 4.5. Number of correct significant digits sd and number of f-evaluations fev for the nonlinear Example V with 4 = %. The dotted

lines refer to results obtained by PR(2) and GEPR(2) with the boundary-value correction (i.e., FMPR(2) and FMGEPR(2),
respectively).

In the examples a time-dependent source term v(z, x,, X, ) is present. A splitting of v = v + 3v was
used in all experiments, i.e., in the splitting functions f; (see (2.5) and (3.1)) only a fraction of the source
term (viz. 3v) was included. For Example II we used also another splitting of v. In this splitting of v the
entire source term was only included in f,.

The results of the experiments are presented in Tables 4.1-4.8 and the corresponding figures. The
T-values correspond to the finest grid in the global extrapolation scheme.

For the linear Example I with constant boundary conditions the global extrapolation scheme is more or
less comparable to the SC method. The basic PR(1) scheme is strongly sensitive to the splitting of the
source term in the linear Example I1. Using the most efficient splitting of v in the basic scheme the PR(1)

Table 4.5

Results for the nonlinear Example V with i = 3; obtained by the PR(2), GEPR(2) and SC method. The numbers in the parentheses
are the sd-values obtained by FMPR(2) and FMGEPR(2)

Method T sd fev Jev FBS
PR(2) 3 2.35(2.52) 15 6 24
= 3.11(3.52) 30 12 48
= 3.74(4.12) 60 24 96
= 4,34(4.72) 120 48 192
= 4.94(5.32) 240 96 384
GEPR(2) 1 21(213) 30 12 48
5 3.42(3.41) 60 24 96
2 432(4.34) 120 a8 192
- 5.52(5.81) 240 96 384
sC : 419 38 6 32
5 5.36 84 12 72
= 6.69 134 24 110
= 7.85 240 48 192
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8.0 sC

sd

6.0+ GEPR(1)

5.0 PR(1)
4.0

3.0

2.0

0 50 100 150 200 750
fev

Fig. 4.6. Number of correct significant digits sd and number of f-evaluations fev for the mildly nonlinear Example VI with 4 = 5.

and GEPR(1) method are superior to the SC method. For the linear Example 111 the global extrapolation
scheme is only with the Fairweather—Mitchell boundary-value correction more efficient than the SC
method. For the linear example IV the accuracy of all methods is low because of the oscillating solution.
The SC method is less efficient than the PR(1) and GEPR(1) method.

The tables of results and figures of the nonlinear Examples V, VII and VIII illustrate the superiority of
the SC method if high accuracy is desired. In the last two examples the global extrapolation scheme and
Peaceman—Rachford scheme become unstable for larger stepsizes. For the mildly nonlinear Example VI the
GEPR(1) scheme is slightly less efficient than the SC method.

Table 4.6

Results for the mildly nonlinear Example VI with h =3; obtained by the PR(1), GEPR(1) and SC method. In the SC method
o=[8/h2+(t+2)/(t+1)]/(t+1).

Method T sd fev Jev FBS
PR(1) : 2.41 9 6 12
= 31 18 12 24
% 3.7 36 24 48
= 43 7 48 96
= 4.9 144 9 192
GEPR(1) i 2.46 18 12 24
5 3.63 36 24 48
= 4.63 72 48 96
= 5.69 144 96 192
sC i 3.96 46 6 40
= 5.35 84 12 72
5 6.63 134 24 110
= 7.82 240 48 192
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8.0
' sC
7.0 -
i ’//
—"/
6.0 —
PR(2) _.CEPR{D) GEPR{2)
5.0 et A
sd ! /"’f‘;""/ """ -
t / - e
{ 4.0 /’ —
! | PR(1)
3.03 /
|
2.0 re
| S
1.0}
0. . —_— : —
0 200 400 600 800 1000 1200 1400
- s L@y

Fig. 4.7. Numbers of correct significant digits sd and number of f-evaluations fev for the strongly nonlinear Example VII with h = 5

5. Concluding remarks

From the tables of results and the figures we may draw the following conclusions:
(1) For the linear Example III and the nonlinear examples the SC method is superior to the
Peaceman-Rachford method (PR(»)) and the global extrapolation scheme (GEPR(»)), whereas for the

Table 4.7

Results for the strongly nonlinear Example VII with k= 3 obtained by the PR(»), GEPR(») and SC method. The numbers in the
parentheses are the results obtained by PR(2) and GEPR(2). In the SC method o = (24 sin®2m¢)/((1 + t)h?). An asterisk indicates
unstable results

Method T sd fev Jev FBS
PR(1) . - - - -
(PR(2)) 2 1.51(2.32) 72(120) 48(48) 96(192)
& 2.16(3.39) 144(240) 96(96) 192(384)
i 2.53(4.03) 216(360) 144(144) 288(576)
s 2.75(4.48) 288(480) 192(192) 384(768)
5 3.15(5.09) 432(720) 288(288) 576(1152)
GEPR(1) i . - - -
(GEPR(2)) e 3.97(4.21) 432(720) 288(288) 576(1152)
A 4.53(4.54) 576(960) , 384(384) 768(1536)
i 5.3(5.08) 864(1440) 576(576) 1152(2304)
SC ;. 3.54 150 24 126
& 4.9 256 43 208
& 6.03 412 9 316

712 748 192 556

i
s
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Fig. 4.8. Number of correct significant digits sd and number of f-evaluations fev for the nonlinear Example VIII with A = 5.

linear Examples II and IV the global extrapolation scheme is the most efficient integrator. For the linear
Example I the GEPR(1) method is competitive to the SC method.

(2) The results for the linear Example III illustrate that the inaccuracies caused by time-dependent
boundary values can be removed by applying the Fairweather—Mitchell boundary-value correction. For

Table 4.8

Results for the nonlinear Example VIII with h = % obtained by the PR(2), GEPR(2) and SC method.

Method T sd fev Jev FBS

PR(2) i 1.28 15 6 24
= 2.25 30 12 48
= 2.56 45 18 72
% 28 60 24 96
% 313 90 36 144
= 3.38 120 48 192
~ 3.97 240 96 384

GEPR(2) < -2.18 60 24 96
+ 3.15 90 36 144
= 3.35 120 48 192
= 4.07 180 72 288
= 4.39 240 96 384

sC ! 3.55 56 6 50
= 4.65 96 12 84
% 5.86 168 24 144
= 7.02 284 48 236
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this problem the extrapolation scheme with the correction technique (FMGEPR(1)) is even more efficient
than the SC method.

(3) For nonlinear problems the application of the boundary-value correction is less successful in the
extrapolation scheme (see Table 4.5). Additional experiments have shown that solving the nonlinear
equations more accurately (i.e., performing more Newton iterations) the effect of the Fairweather—Mitchell
modification is more clearly noticeable in the extrapolation scheme. However, the SC method is still more
efficient. For more general boundary conditions and regions in the (x,, x, )-space the Fairweather—Mitchell
correction is of less practical value (see [7]).

(4) With the exception of the strongly nonlinear Example VII with the oscillating solution it pays to
apply extrapolation of the PR(») scheme for small integration steps. For rather large integration steps the
PR(») method is competitive or even more efficient.

(5) The SC method shows its fourth-order behaviour for realistic integration steps. The theoretical order
of the GEPR(») scheme appears in the results for the nonlinear examples not so clearly as for the SC
method. Additional experiments have shown that performing more Newton iterations in the basic PR(»)
scheme the order behaviour of GEPR(») stands out more clearly. However, for large integration steps the
GEPR(») scheme becomes less efficient.

Summarizing, from the three methods considered, the SC method appears to be the most efficient and
robust one for the numerical solution of nonlinear parabolic equations in two space dimensions if high
accuracies are desired. The ADI method of Peaceman and Rachford is particularly suited if one is satisfied
with low accuracy results. For linear or mildly nonlinear problems the global extrapolation scheme is a
useful alternative. In addition, the global extrapolation scheme is easier to implement than the SC method.

It should be noted that the SC method is slightly favoured by using four exact starting values and the
smoothed extrapolation formula (2.2a-2.2b) as initial approximation in the Chebyshev iteration. By
choosing better initial approximations in the Newton processes a more robust global extrapolation scheme
can be constructed for nonlinear problems. The numerical solutions on the finest time grid can be used to
construct (e.g., interpolation techniques) initial approximations in the Newton processes on the two other
time grids. However, a price has to be paid for the easy applicability of the algorithm and a few additional
experiments have shown that the gain in efficiency is not surprising. Further, the storage requirements of
the SC method and the global extrapolation scheme are more or less comparable (see Table 4.0).
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